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Abstract

Several schemes have been proposed that incorpo-
rate an auxiliary buffer to improve the performance of a
given size cache. Victim caching, aims to reduce the
impact of conflict misses in direct-mapped caches. Vic-
tim offers competitive performance benefits, but requires
a costly data path for swaps and saves between the main
cache and the added buffer.

Several multilateral schemes (e.g. NTS, PCS) offer
competitive performance with Victim across a wide
range of associativities, but require no swap/save data
path. While these schemes perform well overall, their
overall performance lags that of Victim when the main
cache is direct-mapped. Furthermore, they also require
costly hardware support, but in the form of history tables
for maintaining allocation decision information.

This paper introduces a new multilateral cache man-
agement scheme, Allocation By Conflict (ABC), which
generally outperforms Victim, NTS, and PCS. Further-
more, ABC has the lowest hardware requirements of any
multilateral scheme –– only a single additional bit per
block in the main cache is required to maintain usage
information for the allocation decision process, and no
swap/save data path is needed.

1  Introduction

The Victim cache [6] was proposed as a method to
reduce the impact of conflict misses in direct-mapped
cache structures. While the Victim scheme performs well,
it requires an auxiliary cache (buffer) to hold victims and
a costly data path for swaps and saves between the two
caches.

Several other schemes have been proposed which, like
Victim, make use of a second (small) cache placed in par-
allel with the main cache, but unlike Victim, attempt to
achieve their performance gains without using a data path

between the two caches. The best performing of these
multilateral [9] schemes are NTS [8][10] and PCS [10],
which make their allocation decisions between the two
caches based on the predicted usage of an incoming block,
based on previous past tours1. A multilateral cache, as
shown in Figure 1, consists of two unconnected data
stores with disjoint contents; the A cache is the larger data
store (or the “main” cache), while B refers to the smaller
data store (or the “buffer”). Instead of using an A to B data
path, these multilateral schemes make use of a history
table to contain the information necessary to make
informed allocation decisions so as to avoid swapping and
saving blocks between A and B. Each of NTS, PCS and
Victim have certain applications and system configura-
tions where they perform best, but their average perfor-
mance gains are comparable.

We have developed a new multilateral allocation
scheme, Allocation By Conflict (ABC), that generally
outperforms Victim, NTS, and PCS, and has reduced
hardware complexity. ABC decides where to allocate
blocks (into A or B) based on the current tour usage of the
block it might replace in A, rather than on the past tour
usage of the incoming block. ABC allocates a block to the
A cache if the LRU element of its set in A has not been
reaccessed since the last miss reference to that set that did
not replace a block in A; otherwise, the block is allocated
to the B cache. ABC’s performance gains derive from its
ability to reduce the impact of conflict misses by extend-
ing the tour length of an LRU block in A that is still
actively being referenced when a miss occurs to its set,
thereby eliminating the need for swaps as in Victim.
ABC’s management decisions require only a single addi-
tional bit per block in cache A, rather than a costly table as

1.  "Tour" refers to the time between an allocation of a block in the level 
1 data cache and its subsequent eviction. A cache block may have many 
tours through the cache during program execution.



in NTS and PCS.
In this paper we discuss the ABC scheme operation

and compare its performance to Victim [6], NTS [8], and
PCS [10]. For comparison, we also evaluate the perfor-
mance of a random allocation scheme. We find that ABC
generally outperforms NTS, PCS, and Victim in all but
the floating point benchmarks (CFP2000). Surprisingly,
despite its lack of “intelligent” decision making, Ran-
dom’s performance is often comparable to NTS, PCS, and
Victim.

Section 2 reviews previous cache allocation schemes
and Section 3 describes the new Allocation By Conflict
scheme, as well as Random allocation. Our simulation
environment and experimental results are described and
analyzed in Section 4. We conclude in Section 5.

2  Previously proposed allocation schemes

Several schemes have been proposed for managing
multilateral cache structures, in particular, Dual [4], NTS
[8][10], MAT [5], and PCS [10]. Of these, NTS and PCS
were found to perform best overall [10]. We compare the
performance of ABC to NTS, PCS, and to Victim [6]
which would effectively be a multilateral cache structure
if swap penalties are ignored (set to 0, i.e. a 1 cycle
latency for either an A cache hit or for an A miss that hits
in B). As Victim is usually assigned a 2 to 4 cycle swap
penalty (a 0 swap penalty) as in our simulation model, it
provides an upper bound on the performance of an imple-
mentable Victim scheme. In this section we describe the
operation of the Victim, NTS, and PCS schemes. We
focus our discussion on multilateral first level (L1) caches
for the following evaluations.

In the Victim cache[6] the B cache is a victim buffer
that is used to hold recently evicted blocks (victims) from
the A cache in the hope of keeping them in B until their
next access. Unlike the multilateral cache in Figure 1, there
is no direct path between B and the processor or between
A and the secondary cache, but there is a bidirectional path
between A and B. A block evicted from A as the result of
a new block’s arrival is placed (saved) in B, a block evicted
from B returns to the next level of memory, and a block hit
in B is swapped with the LRU block of the corresponding
set in A. The A to B data path is costly since it is bidirec-
tional and lies on the critical path when there is a hit in B. 

Many previous evaluations have been performed on
the Victim cache scheme, and several improvements to the
basic Victim scheme have been proposed, including Selec-
tive Victim Caching [12] to reduce saves and swaps and
selectively maintain blocks in L1, and Prediction Caches
[1] to combine streaming buffers [6] with Victim buffers
and also selectively hold blocks in L1. Each of these
schemes improve the performance, but each requires addi-
tional hardware support. Victim caching is combined with

several other strategies in [3]. 
NTS (nontemporal streaming) [8][10] uses hardware

to dynamically partition cache blocks into temporal (T)
and nontemporal (NT) blocks, based on their reuse behav-
ior during a past tour. A block is classified NT if during a
tour in L1, no word in that block is reused. In subsequent
tours, NT blocks are allocated in the B cache; all other
blocks (those marked T and those for which no prior infor-
mation is available) are allocated in the A cache. A T/NT
bit is associated with the effective address of each block
and kept in a lookup buffer that is associatively accessed
when a miss occurs.

PCS (program counter selective) [10] is a multilat-
eral cache design that evolved from the CNA cache
scheme [16]. PCS determines block placement based on
the program counter value of the memory instruction
causing the current miss, rather than on the effective
address of the miss block as in NTS. Thus, in PCS, recent
tour characteristics among all blocks recently brought to
cache by this memory accessing instruction, rather than
that of only the current block being allocated as in NTS, is
used to determine the placement of this block[10]. PCS
performance is best in applications (like twolf and
ammp) where the reference behavior of a given datum is
well-correlated with the memory-referencing instruction
that brings the block to cache.

3  New allocation schemes

3.1  Allocation By Conflict (ABC)

NTS and PCS focus on placement decisions by asking
whether an incoming (miss) block is deemed to have tem-
poral or nontemporal reference behavior, and placing it in
A or B accordingly. The Allocation By Conflict scheme
(ABC) focuses instead on the replacement decision by
asking whether the conflict block (the block that would be
replaced in A if the incoming block were allocated to A)
is still being actively referenced, i.e. whether it is deemed
desirable to prolong the tour length of the conflict block.
If so, the incoming block is placed in B, replacing some
other block; otherwise it is placed in A and replaces the
conflict block.

How is ABC implemented? In particular how does it
decide whether the conflict block is still being actively
referenced? For conciseness, we refer to the set of A that
the miss block maps to as the A-set, and the corresponding
set of B as the B-set. Whenever a miss block is allocated
to B we say that a CNR (Conflict with No Replacement)
has occurred in its A-set. Each block in A has an associ-
ated C bit that indicates whether a CNR to its A-set has
occurred since its last reference. In particular, when a
block begins a tour in A, its C-bit is set to 0. Whenever a
CNR occurs, C is set to 1 for all the blocks in that A-set.
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Figure 1: Processor and memory subsystem characteristics.

Fetch
Mechanism

fetches up to 16 instructions in program 
order per cycle

Branch Predictor perfect branch prediction

Issue 
Mechanism

out-of-order issue of up to 16 operations 
per cycle, 256 entry instruction re-order 
buffer (RUU), 128 entry load/store queue 
(LSQ); loads may execute when all prior 
store addresses are known

Functional Units
16 INT ALUs, 16 FP ALUs, 8 INT MULT/
DIV, 8 FP MULT/DIV, 8 L/S units

Functional Unit 
Latency 
(total/issue)

INT ALU:1/1, INT MULT:3/1, INT DIV:12/
12, FP ALU:2/1, FP MULT:4/1, FP DIV:12/
12, L/S:1/1

Instruction Cache perfect cache, 1 cycle latency

Data Cache

L1 (A and B) write-back, write-allocate, 32 
byte lines, 1 cycle hit latency (0 swap pen-
alty for Victim caches), 18 cycle miss 
latency, non-blocking, 8 memory ports

TABLE 1: Parameter value of the configurations studied. 

Single Victim ABC/NTS/PCS/Random
Cache A A B A B
Size 32 / 64K 32K 4K 32K 4K

Associativity 1,2,4,8 / 1 1,2,4 32 1,2,4 32
The C-bit of a block is reset each time the block is refer-
enced. Thus C=1 indicates that at least one CNR has
occurred in this A-set during the current tour of this block
and this block has not been referenced since the last CNR
to this A-set. For completeness, empty or invalid blocks
have C=1 by default. The conflict block is deemed "being
actively referenced" if its C bit is 0. 

ABC simply allocates a miss block to A if C=1 for the
conflict block, and to B if C=0; both A and B use LRU
replacement. A block in A thus continues to remain in A
until a miss occurs while it is the LRU block of its A-set
and at least one CNR has occurred to its A-set during its
current tour and this block has not been referenced since
the most recent such CNR, i.e. until it is the conflict block
of a miss and is deemed "not being actively referenced."
The B-cache must simply accommodate all block tours
that begin when the conflict block (in A) is deemed "being
actively referenced." 

What are some consequences of the ABC policy? If a
block is accessed at least once between successive CNRs
to its A-set, it can remain in A indefinitely. Note that if a
block has not been accessed since the last CNR to its A-
set, then it could have been replaced at that last CNR
without being missed from then until now; it is therefore

considered to be a good candidate for replacement now.
Thus, ABC makes active replacement decisions based on
whether to retain or replace the conflict block in A, which
in turn is based only on the current tour behavior of the
conflict block since the last CNR to its set. By contrast,
NTS and PCS make active placement decisions based
only on past tour characteristics of the miss block or miss
instruction, respectively; Victim makes no active deci-
sions and simply uses B to buffer recently replaced blocks
from A. ABC, like NTS and PCS, but unlike Victim,
requires no data path between the A and B caches.

We have also evaluated two ABC variants: a) when a
CNR occurs, rather than setting C=1 for all blocks in the
A-set, we set C=1 for only the LRU block and b) each C
bit is replaced with a 2-bit saturating counter [13]. How-
ever, neither of these schemes performed as well as the
ABC scheme presented here.

3.2  Random allocation

We also evaluate the Random allocation scheme to
compare its performance against multilateral caches of a
given size and configuration. Although Random uses no
intelligence in its allocation decisions, it provides surpris-
ingly good performance. The Random allocation scheme
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Figure 2: Percent speedup for each application and each cache (direct mapped A configurations). 
has no data path between the A and B caches, each of
which uses LRU replacement. A virtual coin-flip decides
whether a miss block is allocated to A or B. A versus B
allocations are equally likely in this paper; biased proba-
bilities of allocation were also evaluated in [13], but
showed only similar or degraded performance.

4  Experimental results

In this section, we present the performance of 4 multilat-
eral caches embedded in the highly concurrent system
sketched in Figure 1 (NTS, PCS, ABC, and Random) and
Victim caches (which include an A to B swap/save path

and use the B cache as a victim buffer). All performance
is shown as percent speedup relative to a conventional (no
B cache) 32 KB direct-mapped (32k:1w) baseline cache
configuration. We also include 32k:2w and 64k:1w con-
ventional caches for comparison. Parameters of the spe-
cific configurations studied range over the values shown
in Table 1. The experimental evaluations were carried out
on nine CINT2000 and seven CFP2000 benchmarks [11],
run for 2 billion instructions each, using the SimpleScalar
toolset developed by Austin and Burger [2]. For bench-
marks with multiple data sets provided, the harmonic
mean performance across these sets is used. The perfor-
mance of the baseline system, in instructions per cycle
(IPC), is shown in Table 2 for each of these benchmarks.
A preliminary evaluation for some Windows NT applica-
tions is presented at the end of this section.

4.1  Performance with direct-mapped A caches 

The percent speedup achieved by each cache scheme
for each program is shown in Figure 2, relative to the
baseline performance shown in Table 2. The speedup in
harmonic mean performance over the CINT2000 and over
the CFP2000 benchmarks is also shown (under "mean").
Overall, the speedup obtained by using the multilateral2

CINT2000 IPC CFP2000 IPC

bzip2 6.2673 ammp 0.8568

crafty 6.4367 applu 7.0527

eon 6.7306 apsi 9.0862

gcc 5.9598 equake 6.7031

gzip 5.3890 galgel 4.3838

parser 3.5620 lucas 7.2748

perl 4.6181 mgrid 6.4978

twolf 3.9622

vpr 4.6796

Table 2: IPC for the baseline (32k:1w) system

2.  From here on we use the term multilateral informally to 
include Victim as well as NTS, PCS, ABC, and Random.
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Figure 3: Percent speedups in harmonic mean performance of each cache scheme as A associativity
increases. The effects of increasing associativity on a single structure cache are also shown (labeled
32k (x2) for which the dm bar shows 32k:2w performance, 2way shows 32k:4w performance, and 4way
shows 32k:8w performance). 
cache schemes ranges from virtually none in lucas to
~33% in crafty with ABC. There are also some singular-
ity points like PCS on ammp which does sufficiently well
on this very low IPC application to dominate the
CFP2000 mean speedup. Clearly, some of the benchmarks
tested do not benefit much from any of the improvements
offered by the cache schemes evaluated, i.e. better man-
agement by the multilateral schemes of the L1 data stores
with B buffers, increased associativity of a single cache
(32k:2w), or a larger cache (64k:1w). In benchmarks
where there is appreciable performance gain over the base
cache, the multilateral schemes often perform as well as
or better than a more associative single cache or a larger
direct-mapped cache.

Among the multilateral schemes, we see several
trends that were exposed in earlier studies
[9][10][13][14][15]. With a direct-mapped A cache, NTS
usually outperforms PCS (in all benchmarks except
bzip2, twolf, ammp, lucas, and mgrid), and Victim usu-
ally outperforms both NTS and PCS (the exceptions being
crafty, gcc, twolf, ammp, apsi, and mgrid). Victim has
the advantage of a 0 swap latency, but even when a 2 or 4
cycle swap latency is incorporated for a B hit that misses
in A, Victim still generally outperforms NTS and
PCS[13]. 

Surprisingly, the Random allocation scheme also per-
forms very well, equaling or beating both NTS and PCS
in some of the benchmarks (eon, gcc, perl, and equake).
Random’s performance is intriguing since, unlike NTS
and PCS, it does not take any reuse information into
account when making its allocation decisions.

ABC achieves the highest mean speedup over
CINT2000, even outperforming Victim in all of these
integer benchmarks except bzip2 and vpr. In the floating
point benchmarks, Victim outperforms ABC in ammp,
apsi, and mgrid, PCS dominates the mean speedup due to

its high speedup on ammp.
Both ABC and Victim outperform an associative

cache of similar size (32k:2w) and a single structure cache
nearly twice as large (64k:1w) in the CINT2000 harmonic
mean speedup. However, this result does not hold for
CFP2000 due to the high 64k:1w cache performance on
ammp and apsi. The best harmonic mean speedups over
the baseline 32k:1w cache are 9.39% (ABC) over the inte-
ger benchmarks and a more modest 5.51% (PCS) over the
floating point benchmarks. 

4.2  Performance with associative A caches 

The speedups in harmonic mean performance
achieved by each scheme as the associativity of the A
cache is increased to 2- and 4-way are shown in Figure 3.
The base configuration is the 32k:1w cache as above. For
comparison 32k:2w, 4w, and 8w conventional caches are
shown in the bars labeled 32k (x2).

We see, from the CINT2000 data in Figure 3, that as
the associativity of the A cache increases the speedups
increase for each scheme except Victim which anoma-
lously shows slightly lower performance for 2-way, con-
curring with the results in [10][13]. All the multilateral
caches show similar CINT2000 performance with a 4-
way associative A cache, and they all outperform an 8-
way cache of the same size (32k:8w). Random’s speedup
falls off somewhat and is slightly lower than any of the
“intelligent” multilateral cache schemes.

Performance over the CFP2000 floating point bench-
marks is much more erratic. PCS offers the best multilat-
eral cache performance, due primarily to its 8% to 9%
speedup on ammp; a 43% speedup on ammp is also
responsible for the high mean of the conventional 32k:8w
cache.

Over CINT2000, ABC consistently offers the highest
performance, with almost an 11% improvement in the 4-



way case. NTS is generally close to ABC, and beats or
equals PCS. 

4.3  Random allocation performance

The Random allocation scheme might serve as a base-
line for comparing multilateral structures of a given size
and configuration. However, we found that in some cases
the Random scheme performed better than either NTS or
PCS, particularly on CINT2000 with a direct-mapped A
cache. 

Random’s high performance is possible for several
reasons: 1) Random allocates blocks to A and B with a
50/50 ratio, thereby distributing tours equally among both
caches. While a given block may in fact benefit, i.e. expe-
rience longer tours, when allocated to the more associa-
tive B cache or the larger size A cache, when the block is
evicted from a sub-optimally allocated tour, it has a 50/50
chance of being allocated to its preferred cache structure
for its next tour. 2) Each of the caches is managed via
LRU replacement, so blocks that are recently accessed
have a high likelihood of remaining in the cache they are
allocated to. Thus, despite not making any “intelligent”
allocation decision for a miss block, the use of LRU and
the even allocation split between the two caches gives a
block a reasonably good chance of spending most of its
total L1 tour time in its preferred structure. 

While the Random scheme’s performance is reason-
able, its behavior is not easily predictable across different
benchmarks. Schemes whose allocation decisions are
based on some current or past reuse information, like the
ABC, NTS, and PCS schemes, appear to be more rational
and do indeed perform better overall as applications and
cache configurations are varied. Nevertheless, Random’s
good performance does cast some doubt on the benefits of
relying on past tour reuse information for making alloca-
tion decisions. 

4.4  ABC vs. NTS and PCS

While NTS and PCS make their block allocation pre-
dictions based on past usage of miss blocks (NTS) and
other blocks associated with them (PCS), ABC deter-
mines whether to allocate an incoming miss block into A
or B by looking only at the current usage of the block in
cache A that conflicts with the miss block. Using the cur-
rent state of the cache to make placement decisions usu-
ally results in better performance improvement than using
past tour usage behavior, as tour usage behavior tends not
to have very high persistence [15]. 

ABC thus makes its allocation decision based only on
whether to replace the conflict block in A (based on
whether it has been referenced since the last CNR to its
A-set during its current tour), while NTS and PCS look
only at the miss block’s (NTS) or instruction’s (PCS) tem-

porality of usage in previous tours. Furthermore, ABC
stores only a single bit (C bit) per A-cache block and
makes its allocation decision simply by checking the C bit
of the conflict block. NTS and PCS allocation decisions
are made via a lookup and associative compare using a
large table that stores temporality information about past
tours.

When the associativity of the A cache is low, too
many conflicts occur and many tours end prematurely
before temporal reuse occurs, often leading to misclassifi-
cation of blocks as nontemporal. As the associativity of
the A cache increases, fewer conflicts occur, and blocks
that are evicted from A that show nontemporal reuse are
more likely to actually be nontemporal blocks. The longer
a block stays in the cache, the more likely its reuse behav-
ior is to reflect its optimal reuse characteristics [15]. As a
result, the performance of NTS and PCS improves rela-
tive to Victim and Random as A cache associativity
increases [13]. ABC has no such misclassification prob-
lem.

4.5  ABC vs. Victim

Inherently, the way both ABC and Victim attain their
performance gains is similar: both reduce the impact of
hot sets by providing dynamically-sized cache sets, and
both achieve this by using the B cache as a buffer that
may contain several blocks that map to the same set of the
A cache. In both ABC and Victim, the allocation of some
block to B occurs when a conflict occurs in cache A.
However, beyond that, their approach to providing these
dynamically-sized sets differs. Victim in effect may create
a larger size cache set whenever a conflict occurs in a set
of A –– the new miss block is allocated to A and the
replaced block, the victim of that allocation, is saved in
the B cache. If the element replaced from B due to the vic-
tim’s allocation maps to the same set as the new miss
block, the dynamic size of that set remains constant. If the
replaced block and the victim are from different sets, the
dynamic size of the victim’s set increases, and that of the
replaced block’s set decreases by one. 

ABC, on the other hand, may only create a larger size
cache set when a conflict is found in A and the conflict
block has yet to experience a CNR, or the conflict block
has been accessed since the last CNR to that A-set. In this
case, the conflict block is retained in A and the miss block
is allocated into B; if the miss block and the replaced
block map to different sets in A, the dynamic size of the
miss block’s set increases by one block and the dynamic
size of the replaced block’s set decreases by one. In all
other cases, the miss block is allocated into A and all set
sizes remain the same.

When the A cache is direct-mapped, the ABC scheme
outperforms the Victim cache in all but two CINT2000



benchmarks (bzip2 and vpr). In general, Victim saves too
many useless elements in the B cache and does not use the
B cache as effectively as ABC. ABC’s better usage of the
B cache is due to its ability to allow elements to reside in
B longer, as it is possible to evict items directly from A; in
Victim, all evicted items from A must first travel through
the B cache before they can leave the L1 cache structure.
However, in the CFP2000 benchmarks, this additional
time in L1 for each evicted A cache element benefits Vic-
tim cache performance, which equals or beats ABC’s per-
formance in all the benchmarks except ammp and mgrid.
Although ABC’s mean speedup beats Victim on
CFP2000, neither scheme has a speedup of more than
1.5% over the base cache. 

The number of useful elements found in the B cache
of a Victim scheme decreases greatly as A cache associa-
tivity increases. As a result, the performance benefit of the
B cache in a Victim scheme degrades as A cache associa-
tivity increases [13]. In ABC, however, the B cache con-
tinues to perform well since it is used to accommodate
new block tours when the conflict block’s tour length is
extended in A; furthermore when an inactive block is
evicted from A, it returns to the next level of memory
thereby allowing the B cache elements to remain and
potentially be reaccessed before their eviction.

4.6  A preliminary evaluation for some Windows 
NT applications

Additionally, we looked at the impact of these multi-
lateral cache organizations on a set of Windows NT 4.0
applications that were introduced in [17]. Table 3 shows
some characteristics of the applications. These benchmark
measurements include all relevant Windows NT 4.0 sys-
tem code.

We measured the miss rate of the data cache for the
baseline cache and the seven caches shown in Figure 4.

Since, as Table 4 shows, most of the miss rates for these
applications are rather low for our 32k:1w data cache
baseline, a more useful impression of the significance of
the performance gain is given by Figure 4 which shows
the percentage of the misses of the baseline cache that are
eliminated by the cache under evaluation. The bars
labeled "total" reflect the total number of misses in a
given scheme over all these applications relative to the
total for the baseline. To the extent that the data cache
miss penalty is the performance bottleneck, the perfor-
mance of a system with a sufficiently powerful processor
is inversely proportional to the percentage of misses
remaining.

Table 3: Windows NT Application Characteristics

As Figure 4 shows, on each of these Windows applica-
tions ABC eliminates at least as many misses from the
baseline cache as Victim. In total, ABC eliminates 1%
more misses than Victim, 5% more than a 64k:1w, and
10% more than 32k:2w. 

Miss rates are shown in Table 4 for each application
and cache scheme, with direct-mapped A caches.
Although only miss rates are shown in Table 4, our simu-
lations also model delayed hits (accesses to a cache line
that is currently being fetched). The access latency for
delayed hits vary all the way from a cache hit to a cache
miss latency. For example, in apsi, all of the schemes
have a miss rate of 22%. However, the delayed hit rates
for 32k:1w and NTS are 78.3% and 74.9%, respectively.
Therefore NTS has a higher speedup since more accesses
are hits rather than delayed hits. The problem with using
delayed hits for comparison is their variable length
latency; hence using the percent speedup is a more useful
metric.

5  Conclusions

In this paper we have introduced a new cache manage-
ment scheme, Allocation By Conflict (ABC), and com-
pared its performance to the Victim cache, two previously
proposed reuse-based multilateral schemes, NTS and
PCS, and to Random multilateral allocation. As shown in
earlier work, the performance of each of the multilateral
schemes is better than conventional single structure
caches of the same size, and comparable or better than

Figure 4: Percentage of misses eliminated from
the (32k:1w) baseline for Windows NT applica-
tions.
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conventional caches with the same A cache associativity
of nearly twice the size. 

We have shown that ABC has the highest overall per-
formance of the reuse-based allocation schemes because
it makes its allocation decisions based on the current
usage of blocks in the cache, rather than on the past tour
usage of incoming miss blocks as in NTS and PCS. Fur-
thermore, ABC outperforms Victim over each of the
application sets: CINT2000, CFP2000, and Windows
NT. Surprisingly, Random allocation also performs quite
well; however, its performance is less predictable as the
applications and cache configurations are varied.

ABC has much lower hardware requirements than
NTS or PCS, requiring only a single additional bit per
block in the A cache. NTS and PCS require more bits,
and a Detection Unit for storing reuse information about
past tours and an associative lookup for making alloca-
tion decisions. Unlike ABC, Victim requires a costly
bidirectional, time-critical data path between the caches
for swaps and saves. Despite its low cost, ABC has the

overall best performance.
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bzip2 2.8 2.7 2.7 2.8 2.7 2.6 2.9 2.6

crafty 4.0 1.8 0.9 0.9 1.0 0.7 0.8 1.7

eon 1.5 0.6 0.3 0.4 0.3 0.2 1.5 0.9

gcc 7.7 7.2 7.0 6.8 6.8 6.8 6.8 6.7

gzip 3.0 2.8 2.8 2.8 2.8 2.7 3.9 2.4

parser 4.9 4.0 3.9 4.1 4.0 3.8 3.9 3.7

perl 2.6 0.9 0.3 0.7 0.3 0.3 0.3 1.0

twolf 5.9 5.3 5.3 0.2 5.4 5.2 5.3 5.2

vpr 5.1 4.4 4.2 4.7 4.5 4.3 4.2 4.4

ammp 29.9 30.1 29.2 26.1 28.7 29.2 29.9 27.8

applu 5.8 5.4 5.4 5.9 5.7 5.5 5.8 5.5

apsi 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0

equake 0.8 0.1 0.1 0.1 0.1 0.1 0.8 0.8

galgel 11.2 9.9 9.1 22.6 13.0 11.5 11.2 9.1

lucas 3.3 3.2 3.3 3.2 3.2 3.2 3.3 3.2

mgrid 2.4 2.4 2.4 4.1 2.9 2.7 2.4 2.4

doom 3.1 1.1 0.8 1.4 0.9 0.7 0.7 1.1

explorer 2.8 2.0 1.8 2.2 1.9 1.7 1.7 2.0

msdev 6.0 5.5 4.2 4.9 4.8 3.8 4.0 4.0

netscape 2.3 1.3 1.2 1.5 1.2 1.0 1.0 1.2

winamp 2.6 1.6 1.3 1.7 1.4 1.2 1.4 1.4

Table 4: Miss rate per application with 32k:1w A 
caches (best cache scheme is bold)
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