
 TAXI: Trace Analysis for X86 Interpretation

Stevan Vlaovic
Sun Microsystems

4100 Network Circle
Santa Clara, CA 95054

Stevan.Vlaovic@sun.com

Edward S. Davidson
University of Michigan

Advanced Computer Architecture Laboratory
Ann Arbor, MI 48109-2122

Davidson@eecs.umich.edu

Abstract
Although x86 processors have been around for a long
time and are the most ubiquitous processors in the world,
the amount of academic research regarding details of
their performance has been minimal. Here, we introduce
an x86 simulation environment, called TAXI (Trace
Analysis for X86 Interpretation), and use it to present
some results for eight Win32 applications. In this paper,
we explain the design and implementation of TAXI.

1. Introduction

Interest in applications (beyond simply SPEC) has
been increasing within the computer architecture
community. In this paper, we introduce a simulation
environment that allows us to gauge the performance of
some common desktop applications that run on x86
platforms. Previously, the main problem with x86 results
is that detailed performance data could not be gathered,
other than by gathering statistics of high level events[4,5].
Current offerings from Intel, AMD and others have
hardware counters that enable the counting of certain
architectural events, while others use annotated binaries to
sample events. Although counting certain events does
provide insights into performance, the main obstacle to
gathering x86 performance data is that current x86
processors decompose the x86 instructions into smaller
operations, called µops and hide the µop level from the
user. In order to depict microengine performance at the
µop level, this mapping would have to be implemented
anew in the simulator for all the instructions and
addressing modes that appear in the applications of
interest. We have developed such a simulator, and discuss
its design in the paper.

In order to achieve the goal of obtaining performance
related information about x86 processors, in our approach
there are two different aspects that we have to consider.
The first is trace collection, which we discuss in detail in
Section 2.0, and the second is the timing simulation,
which we present in detail in Section 2.2.

2. Software Emulation

To perform cycle accurate simulation, either the
entire simulation, including applications, processor state,
and timing can be modeled in software, or a trace can be
gathered by hardware or software means. This trace can
later be fed into (another) software simulator that tracks
dependencies and resource usage (and hence timing) but
does not require state information; this is the approach
that we took with TAXI.

We chose software over hardware trace collection as
it allows for more flexibility in the type of data that we
can collect and the systems that we can model, and we are
not limited by the size of hardware buffers. Software
emulation by itself does not provide microarchitectural
performance data. This requires (cycle-approximate)
simulation of the microarchitecture under study. Where
emulation is concerned with the correctness of the system
under study, simulation involves modeling only the
characteristics that are of interest, and then gathering
accurate information about those characteristics of the
simulated system. Simulators usually have both of these
components, a functional simulator which performs
emulation by tracking the state of the system, and a
performance simulator which keeps track of dependencies
in the microarchitecture and provides detailed timing
information. These two components can also be separated,
by having the functional simulator (or emulator) create
traces of program execution. These traces can then be fed
into the performance simulator to gather the detailed
timing data. The advantage of this separation is in the
ability to directly compare the performance of different
microarchitecture implementation models of the same
instruction set architecture by using the same trace
repeatedly. The disadvantage is the space required to store
the trace could potentially be very large, depending on the
type of information collected. Although this tracing
methodology did create large traces, it allowed for trace
reuse over multiple models.

In order to implement an x86 performance simulator,
the traces had to be rich with information, as presented in
Section 2.1. Additionally, the capability of adding value
prediction in the future necessitated that values be
associated with registers and loads and stores (so that a
predicted value could be validated). In Section 3.0, we
introduce our simulation infrastructure, called Trace
Analysis for X86 Interpretation, or TAXI. There are two
primary components of TAXI: the functional simulation
(Bochs portion), and the cycle-accurate performance
simulation (SimpleScalar portion).

2.1 Bochs

Rather than starting from scratch, we chose to use an
open-source Pentium emulator called Bochs[3] available
from MandrakeSoft. Bochs, developed by Kevin Lawton,
runs on most platforms including Linux/x86 and
Linux/PPC. Bochs has been developed in an open
“bazaar” style since its inception in 1994 and has involved
a few hundred contributors. Since the purchase of Bochs
by MandrakeSoft, it has been committed to an Open-
Source license (LGPL).

The advantage of using Bochs is that much of the
hardware modeling is already provided. Bochs provides
emulation for devices such as a keyboard, mouse, hard
drive, floppy drive, and a VGA compatible monitor. In
fact, it models not just the CPU, but the entire platform in
enough detail (after modification) to support the execution
of a complete operating system and the applications that
run on it. Currently, we are using out-of-the-box Windows
NT 4.0 (Build 1381, Service Pack 5) as the operating
system for our functional simulator. Our modified Bochs
emulator runs as a user-level process on a standard PC
(under Linux or Windows NT) and models the platform
components completely in software.

Although Bochs proved to be a good starting point, it
was by no means complete; a few device drivers had to be
added. For example, a sound card device driver had to be
added before our Winamp application would run on our
functional simulator.

Bochs requires a hard drive, which is similar to any
other file. After creating a hard drive image, a floppy
image that contains bootable kernels are required to
"boot" our functional simulator. The hard drive image
then needs to be “formatted”, and the operating system
installed with the correct hardware settings configured
(i.e. 84-key keyboard, VGA graphics, Microsoft mouse,
etc.). Although we chose to use Windows NT as our
guest operating system, we could have just as easily used
variants of Unix (that run on x86 platforms) as well. In
fact, since there are much less complicated licensing
issues with certain Unix derivatives, the Bochs website
contains premade bootable Unix hard drive images. By

simply directing Bochs to the proper hard drive, any
number of different environments can be simulated.

Since Bochs is generally used as a testbed for
developing device drivers (and providing a way to run old
DOS games) a portion of the code is untested. Because the
applications that we chose to run are more complex than
those previously used, a few problems were encountered:
the VGA device not being able to handle certain modes,
an error in the physical page access (wrap around for the
end of memory), and other such anomalies common with
untested code.

)LJXUH�� ,QWHUDFWLRQRI IXQFWLRQDOVLPXODWRU�RXW�RI�)LJXUH�� ,QWHUDFWLRQRI IXQFWLRQDOVLPXODWRU�RXW�RI�

RUGHUVLPXODWRU�DQGWKH WUDFH ILOHVRUGHUVLPXODWRU�DQGWKH WUDFH ILOHV

Bochs also had to be modified to create a suitable
interface to the performance simulator. Figure 1 shows the
interaction between the functional simulator and the
performance simulator. In this version of TAXI, Bochs
was used to generate a trace file as described above, while
later revisions can simply pipe the trace to the
performance simulator. As seen in the middle left rounded
box of Figure 1, our instruction trace contains the
following data:

• Segment Register (CS)
• Effective Instruction Pointer (EIP or PC)
• Assembly of the Instruction (Assy)
• Eflags Register Contents
• Tag
• 32-bit code flag
This is shown in the first line of the lower left box,

which represents one x86 instruction. The results of
executing this instruction are shown by the register
contents following the instruction. In this example, the
segment register value (CS) is 0x0008, the EIP is
0x801911B8, the assembly is 0x6683385C, the Eflags

0008: 801911b8: 6683385C: 00000206: 4 1
EAX:FF09F2D0

ECX:FF09F2CA
0008: 801911BC: 740B: 00000212: 5 1

4:
 0xAD1C20 0xFF09F2D0 L
5:
 0x4452D0 0x64 L

Simulator

Out-of-order
x86

Simulator

CS: EIP: Assy: Eflags: Tag Is32? Tag: Paddr Value L/S

Functional

Instruction Trace Memory Trace

register is 0x206, the tag is 4, and instruction is a 32-bit
instruction. Even though our performance simulator only
tracks dependencies (as opposed to actually performing
the computation), the inclusion of state (register values)
was added to facilitate future enhancements (such as value
prediction or wrong path execution). Anytime a register
changes value, we output that value to the instruction trace
file. The next line in the instruction trace in Figure 1
shows that the EAX register contents changes to
0xFF09F2D0 as a result of the execution of this
instruction.

For the performance simulation, the data address of
each load and store is also required. We create a second
trace file (i.e. each run of an application produces two
traces, one for all the instructions, and another that has all
the load/store addresses) that contains the following
information which is needed to associate each address
with a particular load/store instruction:

• Tag
• Physical Address
• Value
• Load or Store
The Tag is used to associate the address with a

particular instruction in the first trace. Since each
instruction is tagged, by inspecting the memory trace file
all the loads and stores for that instruction (tag) can be
determined. In the example of Figure 1, the first
instruction is tagged with the number 4, the memory trace
file is searched sequentially until the tag 4 is found. The
resulting physical address, 0xAD1C20, is then used to
model the access to memory.

2.2 SimpleScalar

Rather than start from scratch, we chose to start with
an existing out-of-order simulator, SimpleScalar,
developed by Austin and Burger[1]. SimpleScalar is the
most flexible existing package with open source code,
which made it most suitable for our needs.

SimpleScalar performs fast, flexible, and reasonably
accurate simulations of modern processors that implement
the SimpleScalar Instruction Set Architecture (ISA).
Although there are no production processors which use
this ISA, it is based on the MIPS instruction set. The
SimpleScalar ISA, called PISA, is relatively easy to
modify and extend. The performance simulator portion of
SimpleScalar has been aggressively tuned for high speed
simulation, making it easier to run larger, more realistic
applications.

Although SimpleScalar is a good starting point,
currently it cannot directly handle x86 applications.
However, starting with the Pentium Pro, Intel and most
x86 processor manufacturers began dynamically
translating x86 instructions into (computationally)

smaller, more RISC-like instructions (µops), which are
then directly executed by the microarchitecture. These
µops are not unlike PISA instructions. For instance, a
memory-register ADD can be decomposed into the
following PISA instructions:

LW Temp1, addr
ADD addr, REG ADD Temp1, Temp1, REG

SW Temp1, addr

 Since Intel and other x86 processor manufacturers
who use µops do not publish the actual decomposition, we
have developed our own µop mapping which is close to
Intel’s µop mapping. By using the performance counters
in the Pentium II, we can measure the average number of
µops per instruction, which is within 10% over the
applications we studied. We provide a decomposition of
x86 instructions into PISA instructions (µops) for all
addressing modes and for roughly 150 x86 instructions,
which is sufficient for all our applications.

)LJXUH��)XQFWLRQDOSLSHOLQH IRU[���RXWRUGHU�7$;,)LJXUH��)XQFWLRQDOSLSHOLQH IRU[���RXWRUGHU�7$;,

DGGLWLRQ LV WKH IURQWHQGRI WKHSLSHOLQHDGGLWLRQ LV WKH IURQWHQGRI WKHSLSHOLQH��6LPSOH6FDODU LV6LPSOH6FDODU LV

WKHEDFNHQGWKHEDFNHQG

In addition to creating the µop breakdown, significant
changes had to be made to the front end of SimpleScalar’s
out-of-order pipeline model to obtain the pipeline
sketched in Figure 2. Both the instruction and memory
reference trace files, (as shown in Figure 1), are inserted
into the performance simulator at the Fetch stage. The
next two subsections describe the Fetch and Decode
functional stages of the out-of-order model. Note that we
can arbitrarily associate any number of actual pipeline
stages to each of these functional stages. For instance, in
our Pentium III model, Fetch takes 3 pipeline stages,
represented by IFU1, IFU2, and IFU3.

Instruction
Trace

Memory
Trace

Fetch
I-Cache

Decode

Dispatch

Scheduler

D-CacheExec

Writeback

Commit

I-TLB

D-TLBMemory

SimpleScalar
Portion

TAXI
Addition

2.2.1 Fetch

In the fetch stage of the TAXI performance simulator,
the first task is to read in x86 instructions from the
instruction trace (previously generated by the x86
emulator). Next, using the tag information, the memory
addresses (if any) associated with the current instruction
are read in from the memory trace. These instructions are
then converted into cache line addresses so that the
Streaming Buffer can be represented. The Streaming
Buffer in any generic x86 processor holds up to n cache
lines, aligned on cache line boundaries. The Streaming
Buffer holds the raw instruction stream aligned on cache
line boundaries while the processor’s front end breaks
down the stream into instructions to be fed into the x86 to
µop decoders. In the Intel P6 architecture family the
Streaming Buffer holds one cache line [6].

The Streaming Buffer is further broken down into
blocks, with one block transferred per cycle to the
instruction to µop decoders. For instance, if the cache line
size is 32 bytes, and the internal decode width of the
processor is 16 bytes, there are 2 blocks per cache line
(i.e. 2 cycles to decode one cache line). Since x86
instructions are unaligned, yet the Streaming Buffer is
aligned on cache boundaries, the number of instructions
that can fit into an n line Streaming Buffer must be
calculated, such that the number of instruction cache
accesses can be correctly modeled.

Using the address of the instruction and its length, the
number of instructions that fit into the decode width can
be determined. For instance, a decode bandwidth of 16
bytes can handle eight consecutive 2 byte instructions, or
alternatively three 5 byte instructions (with one byte of
wasted bandwidth if the next consecutive instruction is
more than 1 byte). (Note that the first instruction is always
aligned.) This is exactly how the actual hardware would
partition the buffer into x86 instructions and access the L1
instruction cache.

The instructions are converted into cache and TLB
accesses only if the instructions do not reside in the
Streaming Buffer. There is no need for either translation
or cache line fetch for a cache line that is already present
in the internal buffer of the processor.

Since our implementation uses instruction traces, it is
difficult to model wrong path execution of an out-of-order
machine. Rather than keeping wrong path information in
the trace (this makes the trace much too large), we mark
the last µop of an x86 branch instruction that is incorrectly
predicted. The front of the pipeline is then stalled (no
more instructions are read in from the trace); as soon as
the marked µop its executed, the front of the pipeline is
allowed to resume reading correct path instructions from
the trace. Although this does not capture second order
effects (e.g. cache and TLB state modified by the wrong

path execution), it does correctly model the nominal
recovery latency corresponding to a branch misprediction.

Because we have values embedded within the trace,
we can actually model wrong path execution. By including
an emulation engine within the performance simulator, we
can traverse down incorrect paths. (The caveat here is that
load values may not be known if we have not seen this
memory access previously.) With this framework, we
could measure the performance impact of modeling
speculative execution versus handling mispredictions in
the manner that we do with TAXI.

2.2.2 Decode

In the Intel and AMD current x86 architectures, three
types of decoders are used to break down x86 instructions
into µops. A simple decoder can decode all instructions
that break down into a single µop. A complex decoder can
decode the instructions that decompose into more than
one, but less than five µops. Finally, a MicroInstruction
Sequencer (MIS) is needed for all instructions that
decompose into five or more µops. TAXI models the
simple and complex decoders and the MIS.

In the decode stage we need to decode the x86
instructions and put them into a Decoded Instruction
Queue (DIQ) where the resulting µops are processed like
any other out-of-order load/store processor that has fixed-
length instructions. This stage continues decoding (putting
instructions into the DIQ) as long as the following holds:

• available width from the Streaming Buffer
• available simple and complex decoders
• available temporary registers
• available space in the Decoded Instruction Queue
It is essential for x86 instructions that decompose into

many µops that the DIQ accept partial µops lists (only a
fraction of the µops from each instruction). For instance,
the bswap operation requires eleven µops in our
decomposition, and if the DIQ can hold a maximum of six
µops, then an all or nothing policy would deadlock the
processor. Obviously, the TAXI implementation allows
for partial µop decomposition.

2.2.3 Miscellaneous Additions

There are other changes that had to be made to
SimpleScalar in order to get it to work correctly within the
TAXI infrastructure. The load and store addresses that are
stored in the Memory Reference trace must be associated
with each µop when the x86 instruction is decoded. Then,
in the Exec/Memory phase of SimpleScalar shown in
Figure 2, these addresses are used when accessing the D-
cache and D-TLB. Since SimpleScalar contains both a
functional and a performance simulator, it generates the

necessary data reference addresses (whereas TAXI gets
the addresses from the memory reference trace).

An interesting and somewhat limiting aspect of the
x86 architecture is the number of architected registers:
only 8 general purpose registers are architected. Since
having only 8 registers would be a severe limitation, most
x86 architecture implementations that generate µops
employ non-architected registers, i.e. registers that are not
visible to the software and are managed entirely by
hardware. These registers are used for loads and stores
and other instructions that require temporaries (e.g a
memory-register add which decomposes into a load-add-
store µop sequence). In the TAXI infrastructure, the
number of these non-architected registers can be varied to
gauge the impact of increasing the register space.

The floating point register space in the x86
architecture is defined as an 8 entry stack. Since this, too,
is somewhat restrictive, many hardware implementations
flatten out this register space and allow for more non-
architected floating point registers, which is the approach
taken in TAXI.

3. TAXI

The combination of the modified Bochs and the
augmented SimpleScalar comprise the heart of TAXI.
However, for doing simple cache or branch prediction
studies, then running the out-of-order simulator might be
unnecessary. For this reason, the TAXI infrastructure
includes some specialized analysis tools, such as cache,
branch predictor, and Branch Target Buffer (BTB)
simulators.

For simple cache studies, the dinero-IV cache
simulator by Edler and Hill[2] was modified to accept our
trace files. For the instruction cache, the instruction trace
is used as input, with the pertinent information extracted
being the Effective Instruction Pointer (EIP) and the
instruction length. For the data cache, the address can be
selected to be either the virtual address or the physical
address with the loads corresponding to reads, stores
corresponding to writes. We used the physical address to
access the data cache, using 32 MByte (configurable in
Bochs) of main memory for the functional simulator when
creating the trace files.

Branch prediction is another performance aspect that
is useful to model without the out-of-order simulation
overhead. To do our branch prediction studies, the branch
prediction mechanism of SimpleScalar was modified to
accept our x86 instruction trace. For some of our BTB
studies, only the BTB portion of the branch predictor was
used. The impact of architectural changes to these
resources can be rapidly discovered with these three
simplified, specialized tools.

To better understand the run-time behavior of
applications, it is sometimes useful to target the code that
is most frequently used. By having a correlation between
function names and absolute function addresses, we can
target those functions that cause the greatest performance
detriment. To do this, the mapping of functions to virtual
memory is required. Since Win32 (i.e. Windows)
applications group common functions into Dynamically
Linked Libraries (DLLs), the locations of DLLs and their
functions in virtual memory must be known. The only way
to gather this information is in the virtual environment. To
do this we used a tool called pwalk.exe (included in
the Win32 Software Development Kit) which is run first,
then loads the executable under study. The process is then
walked, giving the loaded virtual memory address of every
DLL that is loaded. Next, to get the addresses of the
functions within a DLL, the export table can be extracted
using objdump.exe (also included in the Win32
SDK). Note that this table just gives the address of
exported functions (and variables), not every function.

To get the address of every function, a debug
version of Windows NT has to be used; this version
comes with associated .SYM files. The .SYM files contain
the addresses of all functions and variables in the DLL or
executable. Because the instruction trace contains the
addresses of each call, it is possible to count the number
of times that each particular function gets called within the
execution trace. Additionally, if a particular sequence of
calls is of interest, then this can also be determined from
the instruction trace. Essentially, these .SYM file tables,
which have absolute function addresses, just correlate
instruction addresses with actual function names, much as
a debugger does. This correlation makes gathering
information and gaining insight into the operation of an
application much more straightforward.

For our studies, we did not require complete
information at this granularity (and we wanted to run the
actual OS, not the debug version as the debug version
would have a larger footprint and run slightly slower);
thus, the DLL mapping for each run of the application, as
obtained from pwalk.exe, was sufficient for our
purposes. Note that these mappings (either the object or
the function) are not required to use TAXI: these merely
provide useful information regarding how the Win32
application behaves.

Lastly, a generic trace reader is also included in the
TAXI infrastructure. This allows for rapid simulation of
other architectural features that are not included in the
TAXI infrastructure (e.g. L2 instruction cache
performance). Eventually, we could merge Bochs with the
out-of-order simulator we developed so that collecting
traces would not be necessary. This would allow for even
greater flexibility and the ability to model wrong-path

information and much longer instruction sequences than
we currently are able to perform with traces.

4. Applications

We have chosen eight popular Windows NT
applications: Id’s Doom, FileMaker Pro 5.0, Microsoft
Explorer 5.0, Microsoft Visual Studio 5.0, Netscape 6.0,
RealPlayer 8.0, Winamp 2.72, and Winzip 8.0. Doom is
one of the early first-person type combat games and is
available as shareware. The run of Doom included
recording a session of a Doom game, and then replaying it
on the simulator. FileMaker Pro 5.0 is a database
application that allows users to easily share their data over
the internet. This run consisted of performing multiple
searches and sorts on a 3,000 entry database. Explorer 5.0
is Microsoft’s web browser; our input is a set of three
.htm pages. The first is the CNN web page, the second is
an ESPN web page, and the third is University of
Michigan’s EECS homepage. Microsoft Visual Studio 5.0
(MsDev) is a code development environment, with 5.0
being the previous release. Our run of Visual Studio
involved the compilation of go from the SPEC95
benchmark suite. Netscape 6.0 is another popular web
browser; the same web pages that were loaded on
Explorer were also used for Netscape. RealPlayer 8.0 is a
video player that can be used to play a number of different
video formats with the second episode of SouthPark being
used as its data input. Winamp 2.72 is the latest release of
a popular mp3 player; its input was “Cool Down Daddy”
by Jellyroll. Winzip 8.0 is a compression and
decompression engine that can handle multiple formats.
Our run of Winzip entailed compressing the source files
from go (from SPEC95).

Table 1 highlights some dynamic characteristics of
the applications that were obtained using TAXI tools. In
the first column, the number (dynamic count) of x86
instructions in each trace is shown. The average number
of µops/instruction is presented in the second column.
Note that the average of these traces (weighted average
where each trace is weighted by the length of each trace)
decomposes into 621 million µops (420 * 1.48). The third
and fourth columns show the number of instructions per
store and load, respectively (e.g. on average 1 of every
4.80 instructions is a store instruction). In the Instructions
per Branch column, LOOP and REP instructions as well
as calls, returns, jumps, etc. are considered branches, and
are therefore included in this number. These ratios imply
that 100 instructions would on average contain 21 Stores,
37 Loads, 20 Branches and 22 instructions of other types;
however 148 µops would on average still contain 21
stores, 37 loads, and 20 branches, and thus 70 µops of
other types, many of which either arise from load, store,

and branch instructions themselves or are otherwise in
direct support of loads, stores, and branches.

Insts.
(x106)

µops/
Inst

Insts/
Stores

Insts/
Loads

Inst/
Brnch

Doom 388 1.52 4.61 2.64 5.40
Explorer 396 1.50 4.53 2.55 4.77

FileMaker 447 1.49 4.61 2.85 5.04
MsDev 469 1.46 4.94 2.63 4.07

Netscape 377 1.52 4.53 2.65 4.33
RealVideo 522 1.44 5.44 2.76 4.63
Winamp 456 1.47 4.11 2.31 6.88
Winzip 302 1.44 5.74 3.05 5.63
Average 420 1.48 4.80 2.67 5.07

7DEOH��7DEOH��SSSOLFDWLRQ WUDFHFKDUDFWHULVWLFVSOLFDWLRQ WUDFHFKDUDFWHULVWLFV

5. Validation

To get some insight into how accurately TAXI
models actual performance, we used the performance
counters on the Pentium II and ran the same applications
with the same input sets that were used with our TAXI
Pentium II model based on [6]. Note that although we are
mostly faithful to the implementation described in [6],
there are still details of the microarchitecture that are not
described. Table 2 shows the parameters for our model of
the Pentium II; an * indicates where we may diverge from
the real implementation. This information gap grows even
larger when it comes to the Pentium 4; our Pentium 4
model contains even more assumptions about the
microarchitecture. Our baseline “real” system is a 300
MHz Pentium II processor.
Parameter Value
Physical Registers* 64-INT, 64-FP
Streaming Buffer Size 32 bytes (1 cache line)
Decode width 16 bytes
Complex Decoders 1
Simple Decoders 2
Decoded Instruction Queue* 8 µops
µop Decode Width* 4 µops
µop Issue Width* 4 µops
µop Commit Width* 4 µops
ROB* 40 µop entries
Branch Predictor* GAg, 512 entry
BTB 512 entry 4-way
Return Address Stack 8 entries
L1 D-cache 16KB 4-way
L1 I-cache 16KB 4-way
L2 Unified 256KB 4-way, 6 cycle latency
TLB size 32 Instruction/64 Data
Memory* 120 cycle latency

7DEOH��3HQWLXP,,PRGHOSDUDPHWHUV7DEOH��3HQWLXP,,PRGHOSDUDPHWHUV

One main problem is that operating system behavior
is not deterministic (due to service scheduling, etc.), but

taking the average of five runs reduces this effect. These
results shown in Figure 3 are given in terms of Cycles Per
Instruction (CPI). There are a number of possible reasons
for the discrepancies between the Real Pentium II and the
TAXI model. First, since operating system activity is
included, variations in scheduling operating services can
affect what is actually executed during a given execution
run. This leads into the another potential problem: it is
difficult to start the counters timing from the exact same
spot (or even run them for the same duration); thus the
counters may be capturing information from different
portions of the program. The other difficulty is that the
µop mappings are different. Although, on average, TAXI
is within 10% (of the µops per instruction ratio), certain
portions of applications can make particular use of
inaccurate instruction to µop mappings. The greatest
difference between the TAXI model and the measured
Pentium II is seen in the application RealVideo at 23%,
with the average difference being 7% across the
application suite studied.

)LJXUH�� ´5HDOµ3HQWLXP,, UHVXOWVFRPSDUHGWRUHVXOWV)LJXUH�� ´5HDOµ3HQWLXP,, UHVXOWVFRPSDUHGWRUHVXOWV

REWDLQHGXVLQJ WKH7$;,PRGHOREWDLQHGXVLQJ WKH7$;,PRGHO

Additionally, a test kernel was run on both a Real
Pentium II and the TAXI model. This test kernel is
comprised of only two instructions, a register subtract and
a branch back to the subtract (i.e. they comprise a simple
loop), which lie in the same cache line. Once the cache
line is loaded into the processor’s Streaming Buffer, there
are no cache accesses. The results in terms of Cycles Per
µop (CPµ) are shown in Table 2. The baseline results are
the average of five runs of 10 seconds each. The
difference in performance is roughly 6%.

System CPµ
Baseline 1.50

TAXI Pentium II Model 1.59
77DEOH�DEOH��7HVWNHUQHOPHDVXUHPHQW�7HVWNHUQHOPHDVXUHPHQW

While in our model, we tried to be faithful to Intel’s
implementation of the Pentium II, certain aspects of the
microarchitecture are not published. In particular, µop
mapping details are not disclosed, and the mapping in our
model, although reasonable, is no doubt somewhat
different. Furthermore, the simplified processor model
simulation makes it difficult to capture processor
performance exactly. However, we feel that TAXI is
sufficiently powerful to enable realistic design evaluations
and trade-offs to be made regarding current and future x86
processors.

6. Conclusions

The x86 instruction set architecture is much different
than other, more conventional ISAs. Its variable length
instructions, numerous addressing modes, and restricted
architecture state make the microarchitecture
implementation much more complex than for RISC ISAs,
especially where high performance is important. With the
information provided by TAXI, we can determine the
individual impact that individual components have on
overall performance and focus processor improvement
efforts on those components that have the highest impact.
We look forward to exploiting this new TAXI
infrastructure to carry out further studies on x86
architectures, applications, and innovations.

7. References

[1] D. Burger, T. M. Austin, and S. Bennett, “Evaluating
Future Microprocessors: The SimpleScalar ToolSet,”
University of Wisconsin-Madison, Computer Sciences
Department, Technical Report CS-TR-1308, July 1996.

[2] J. Edler and M. D. Hill, “Dinero IV Trace-Driven
Uniprocessor Cache Simulator,”
http://www.neci.nj.nec.com/homepages/edler/d4

[3] K. Lawton, “Welcome to the Bochs x86 PC Emulation
Software Home Page!” http://www.bochs.com

[4] D. C. Lee, P. J. Crowley, J-L Baer, T. E. Anderson, and B.
N. Bershad, “Execution Characteristics of Desktop
Applications on Windows NT,” Proceedings of the 24th
International Symposium on Computer Architecture, pp.
27-38, IEEE, 1997.

[5] S.E. Perl and R.L. Sites, “Studies of Windows NT
Performance Using Dynamic Execution Traces,” Digital
Systems Research Center Research Report, RR-146, April
1997.

[6] T. Shanley, Pentium Pro and Pentium II System
Architecture, Addison-Wesley, September 1999.

Real Pentium II performance vs. TAXI

0

0.5

1

1.5

2

2.5

3

Doom Explorer Filemaker MsDev Netscape Realvideo Winamp Winzip Average

C
yc

le
s

P
er

 In
st

ru
ct

io
n

Pentium II
TAXI

